Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Octane-1,8-diyldipyridinium dibromide dihydrate

Xin Xiao,^a Ping-Yue Jiang,^a Yun-Qian Zhang,^a* Sai-Feng Xue^b and Qian-Jiang Zhu^b

^aKey Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guivang 550025, People's Republic of China, and ^bInstitute of Applied Chemistry, Guizhou University, Guiyang 550025, People's Republic of China

Correspondence e-mail: sci.yqzhang@gzu.edu.cn

Received 23 November 2007; accepted 28 November 2007

Key indicators: single-crystal X-ray study; T = 273 K; mean σ (C–C) = 0.003 Å; R factor = 0.029; wR factor = 0.077; data-to-parameter ratio = 23.0.

The asymmetric unit of the title compound, $C_{18}H_{26}N_2^{2+}\cdot 2Br^{-}$ --2H₂O, consists of one-half of the organic cation, one Br⁻ anion and one water molecule. The organic cation is situated on a centre of inversion. The dihedral angle between the pyridine ring and the plane of the central linkage is $59.3 (1)^{\circ}$. The cations, anions and water molecules are linked via $O-H \cdots Br$, C-H···Br and C-H···O hydrogen bonds, forming a threedimensional framework.

Related literature

For general background, see: Day et al. (2000, 2002); Freeman et al. (1981); Kim et al. (2000).

Experimental

Crystal data

 $C_{18}H_{26}N_2^{2+}\cdot 2Br^-\cdot 2H_2O$ $M_r = 466.26$ Orthorhombic, Pbca a = 9.8329 (7) Å b = 13.3000 (11) Å c = 16.5688 (13) Å

V = 2166.8 (3) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 3.75 \text{ mm}^-$ T = 273 (2) K $0.32 \times 0.24 \times 0.19 \text{ mm}$ 21410 measured reflections

 $R_{\rm int} = 0.034$

2503 independent reflections

1842 reflections with $I > 2\sigma(I)$

Data collection

```
Bruker APEXII CCD area-detector
  diffractometer
Absorption correction: multi-scan
  (SADABS; Bruker, 2005)
```

 $T_{\rm min} = 0.380, \ T_{\rm max} = 0.536$ (expected range = 0.347 - 0.490)

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.029$	109 parameters
$wR(F^2) = 0.077$	H-atom parameters constrained
S = 1.01	$\Delta \rho_{\rm max} = 0.25 \ {\rm e} \ {\rm \AA}^{-3}$
2503 reflections	$\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O1W−H1WB···Br1	0.81	2.55	3.353 (2)	173
$O1W-H1WA\cdots Br1^{i}$	0.84	2.57	3.392 (2)	169
C1−H1···Br1	0.93	2.82	3.596 (2)	141
$C2-H2\cdots O1W^{ii}$	0.93	2.48	3.271 (3)	143
C5−H5···Br1 ⁱⁱⁱ	0.93	2.67	3.588 (2)	168
Symmetry codes: (i) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}.$	$x - \frac{1}{2}, y, -$	$-z + \frac{1}{2};$ (ii)	$-x + \frac{1}{2}, -y + \frac{1}{2}$	$1, z + \frac{1}{2};$ (iii)

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005): data reduction: SAINT: program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

We acknowledge the support of the National Natural Science Foundation of China (No. 20662003) and the Foundation of the Governor of Guizhou Province, China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2531).

References

Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.

Day, A. I., Arnold, A. P. & Blanch, R. J. (2000). Patent No. WO/2000/068232. Day, A. I., Blanch, R. J., Arnold, A. P., Lorenzo, S., Lewis, G. R. & Dance, I. (2002). Angew. Chem. Int. Ed. 41, 275-277.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Freeman, W. A., Mock, W. L. & Shih, N. Y. (1981). J. Am. Chem. Soc. 103, 7367-7368.
- Kim, J., Jung, I.-S., Kim, S.-Y., Lee, E., Kang, J.-K., Sakamoto, S., Yamaguchi, K. & Kim, K. (2000). J. Am. Chem. Soc. 122, 540-541.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2008). E64, o183 [doi:10.1107/S1600536807063970]

Octane-1,8-diyldipyridinium dibromide dihydrate

X. Xiao, P.-Y. Jiang, Y.-Q. Zhang, S.-F. Xue and Q.-J. Zhu

Comment

As part of our ongoing investigation on bipyridyl compounds, we present here the crystal structure of the title compound, (I), which can develop strong intermolecular interactions with cucurbit[n]urils (CB[n]) (Freeman *et al.*, 1981; Day *et al.*, 2000, 2002; Kim *et al.*, 2000).

The asymmetric unit of compound (I) (Fig. 1) consists of one-half of the organic cation, one Br^- anion and one lattice water molecule. The organic cation is situated on a centre of inversion which coincides with the midpoint of the C9–C9ⁱ bond [symmetry code: (i) 1 - x, 1 - y, -z]. The two pyridine rings are parallel by virtue of the centre of symmetry. The dihedral angle between the pyridine ring and the central C6–C9/C6ⁱ–C9ⁱ chain is 59.3 (1)°. The cations, anions and water molecules are linked *via* O–H…Br, C–H…Br and C–H…O hydrogen bonds (Table 1) forming a three-dimensional framework.

Experimental

A solution of 1,8-dibromine-octane (2.72 g, 0.01 mol) was added to a stirred solution of pyridine (1.98 g, 0.025 mol) in 1,4-dioxane (50 ml) at 383 K for 5 h. After cooling to room temperature, the mixture was filtered. The solid product was dissolved in 80 ml water, and then set aside for four weeks to obtain colourless crystals of the title compound.

Refinement

Water H atoms were located in a difference Fourier map and refined as riding in their as-found positions relative to the parent O atom, with $U_{iso}(H) = 1.2U_{eq}(O)$. All other H atoms were placed in calculated positions and refined as riding, with C—H = 0.93–0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of (I), showing the atom-labelling scheme for the asymmetric unit. Displacement ellipsoids are drawn at the 50% probability level. unlabelled atoms are related to labelled atoms by the symmetry operation (1 - x, 1 - y, -z). Symmetry related bromide ion and water molecule are not shown.

Octane-1,8-diyldipyridinium dibromide dihydrate

Crystal data	
$C_{18}H_{26}N_2^{2+}\cdot 2(Br^{-})\cdot 2H_2O$	$F_{000} = 952$
$M_r = 466.26$	$D_{\rm x} = 1.429 {\rm Mg m}^{-3}$

Orthorhombic, *Pbca* Hall symbol: -P 2ac 2ab a = 9.8329 (7) Å b = 13.3000 (11) Å c = 16.5688 (13) Å V = 2166.8 (3) Å³ Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer	2503 independent reflections
Radiation source: fine-focus sealed tube	1842 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.034$
T = 273(2) K	$\theta_{\text{max}} = 27.6^{\circ}$
φ and ω scans	$\theta_{\min} = 2.5^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2005)	$h = -12 \rightarrow 12$
$T_{\min} = 0.380, T_{\max} = 0.536$	$k = -17 \rightarrow 17$
21410 measured reflections	$l = -15 \rightarrow 21$

Mo Kα radiation

Cell parameters from 21410 reflections

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 2.5 - 27.6^{\circ}$

 $\mu = 3.75 \text{ mm}^{-1}$

T = 273 (2) K

Prism, colourless

 $0.32\times0.24\times0.19~mm$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.029$	H-atom parameters constrained
$wR(F^2) = 0.077$	$w = 1/[\sigma^2(F_o^2) + (0.0352P)^2 + 0.8723P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.01	$(\Delta/\sigma)_{\rm max} = 0.001$
2503 reflections	$\Delta \rho_{max} = 0.25 \text{ e} \text{ Å}^{-3}$
109 parameters	$\Delta \rho_{min} = -0.39 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Br1	0.28891 (2)	0.652327 (19)	0.328729 (15)	0.05280 (11)
N1	0.44180 (18)	0.35645 (13)	0.32104 (10)	0.0376 (4)
C1	0.3916 (3)	0.40288 (17)	0.38614 (14)	0.0507 (6)
H1	0.3246	0.4517	0.3801	0.061*
C2	0.4380 (3)	0.3791 (2)	0.46131 (16)	0.0642 (8)
H2	0.4014	0.4105	0.5065	0.077*
C3	0.5389 (3)	0.3088 (2)	0.46995 (16)	0.0660 (8)
Н3	0.5725	0.2931	0.5209	0.079*
C4	0.5895 (3)	0.2622 (2)	0.40288 (15)	0.0588 (7)
H4	0.6582	0.2146	0.4077	0.071*
C5	0.5382 (2)	0.28617 (18)	0.32886 (13)	0.0475 (6)
Н5	0.5707	0.2532	0.2832	0.057*
C6	0.3864 (2)	0.37965 (18)	0.23978 (13)	0.0455 (5)
H6A	0.3137	0.4285	0.2453	0.055*
H6B	0.3476	0.3189	0.2170	0.055*
C7	0.4916 (2)	0.42052 (18)	0.18213 (12)	0.0432 (5)
H7A	0.5633	0.3712	0.1749	0.052*
H7B	0.5320	0.4808	0.2048	0.052*
C8	0.4286 (2)	0.44515 (19)	0.10078 (13)	0.0444 (5)
H8A	0.3865	0.3850	0.0791	0.053*
H8B	0.3577	0.4950	0.1084	0.053*
С9	0.5310 (2)	0.48488 (17)	0.04014 (12)	0.0408 (5)
H9A	0.5766	0.5428	0.0633	0.049*
H9B	0.5992	0.4335	0.0306	0.049*
O1W	0.1270 (2)	0.6061 (2)	0.15455 (12)	0.0973 (8)
H1WA	0.0442	0.6131	0.1647	0.117*
H1WB	0.1689	0.6117	0.1965	0.117*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.04958 (16)	0.05876 (17)	0.05006 (17)	0.00012 (12)	-0.00083 (11)	0.01642 (11)
N1	0.0424 (10)	0.0428 (10)	0.0277 (9)	-0.0036 (8)	0.0058 (7)	0.0044 (7)
C1	0.0627 (14)	0.0464 (13)	0.0429 (14)	0.0058 (12)	0.0161 (12)	0.0025 (11)
C2	0.094 (2)	0.0637 (16)	0.0345 (14)	-0.0017 (16)	0.0104 (14)	-0.0069 (12)
C3	0.081 (2)	0.0830 (19)	0.0341 (14)	-0.0090 (17)	-0.0084 (14)	0.0108 (14)
C4	0.0601 (15)	0.0672 (17)	0.0492 (15)	0.0092 (13)	-0.0038 (13)	0.0141 (13)
C5	0.0528 (14)	0.0527 (14)	0.0368 (13)	0.0072 (11)	0.0061 (11)	0.0008 (11)
C6	0.0437 (12)	0.0601 (13)	0.0326 (12)	-0.0035 (11)	-0.0004 (10)	0.0098 (11)
C7	0.0447 (12)	0.0539 (13)	0.0311 (12)	-0.0047 (11)	0.0010 (10)	0.0064 (10)
C8	0.0437 (12)	0.0590 (14)	0.0305 (11)	-0.0035 (10)	-0.0010 (10)	0.0069 (10)
C9	0.0402 (11)	0.0540 (13)	0.0281 (11)	-0.0067 (10)	-0.0031 (9)	0.0036 (10)
O1W	0.0625 (12)	0.177 (3)	0.0519 (12)	0.0086 (16)	-0.0006 (10)	-0.0161 (14)

Geometric parameters (Å, °)

N1—C1	1.337 (3)	С6—Н6А	0.97
N1—C5	1.337 (3)	С6—Н6В	0.97
N1—C6	1.485 (3)	С7—С8	1.520 (3)
C1—C2	1.364 (4)	С7—Н7А	0.97
C1—H1	0.93	С7—Н7В	0.97
C2—C3	1.370 (4)	C8—C9	1.518 (3)
С2—Н2	0.93	C8—H8A	0.97
C3—C4	1.366 (4)	C8—H8B	0.97
С3—Н3	0.93	C9—C9 ⁱ	1.518 (4)
C4—C5	1.364 (3)	С9—Н9А	0.97
C4—H4	0.93	С9—Н9В	0.97
С5—Н5	0.93	O1W—H1WA	0.84
C6—C7	1.509 (3)	O1W—H1WB	0.81
C1—N1—C5	120.42 (19)	С7—С6—Н6В	108.9
C1—N1—C6	120.0 (2)	H6A—C6—H6B	107.7
C5—N1—C6	119.53 (18)	C6—C7—C8	111.07 (19)
N1—C1—C2	120.4 (2)	С6—С7—Н7А	109.4
N1—C1—H1	119.8	С8—С7—Н7А	109.4
C2—C1—H1	119.8	С6—С7—Н7В	109.4
C1—C2—C3	119.7 (2)	С8—С7—Н7В	109.4
C1—C2—H2	120.1	H7A—C7—H7B	108.0
C3—C2—H2	120.1	C9—C8—C7	113.04 (18)
C4—C3—C2	119.2 (2)	С9—С8—Н8А	109.0
С4—С3—Н3	120.4	С7—С8—Н8А	109.0
С2—С3—Н3	120.4	С9—С8—Н8В	109.0
C5—C4—C3	119.4 (2)	С7—С8—Н8В	109.0
C5—C4—H4	120.3	H8A—C8—H8B	107.8
C3—C4—H4	120.3	C9 ⁱ —C9—C8	113.9 (2)
N1—C5—C4	120.8 (2)	С9 ^і —С9—Н9А	108.8
N1—C5—H5	119.6	С8—С9—Н9А	108.8
C4—C5—H5	119.6	С9 ^і —С9—Н9В	108.8
N1—C6—C7	113.42 (17)	С8—С9—Н9В	108.8
N1—C6—H6A	108.9	Н9А—С9—Н9В	107.7
С7—С6—Н6А	108.9	H1WA—O1W—H1WB	108.2
N1—C6—H6B	108.9		
C5—N1—C1—C2	0.0 (3)	C3—C4—C5—N1	1.8 (4)
C6—N1—C1—C2	177.4 (2)	C1—N1—C6—C7	120.1 (2)
N1—C1—C2—C3	1.5 (4)	C5—N1—C6—C7	-62.5 (3)
C1—C2—C3—C4	-1.3 (4)	N1—C6—C7—C8	-178.7 (2)
C2—C3—C4—C5	-0.3 (4)	C6—C7—C8—C9	-179.0 (2)
C1—N1—C5—C4	-1.6 (3)	C7—C8—C9—C9 ⁱ	-177.0 (2)
C6—N1—C5—C4	-179.0 (2)		
Symmetry codes: (i) $-x+1$, $-y+1$, $-z$.			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O1W—H1WB…Br1	0.81	2.55	3.353 (2)	173
O1W—H1WA…Br1 ⁱⁱ	0.84	2.57	3.392 (2)	169
C1—H1…Br1	0.93	2.82	3.596 (2)	141
C2—H2····O1W ⁱⁱⁱ	0.93	2.48	3.271 (3)	143
C5—H5···Br1 ^{iv}	0.93	2.67	3.588 (2)	168

Symmetry codes: (ii) x-1/2, y, -z+1/2; (iii) -x+1/2, -y+1, z+1/2; (iv) -x+1, y-1/2, -z+1/2.

Fig. 1

